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Our new trigonometrically fitted predictor–corrector (P–C) schemes presented here
are based on the well known Adams–Bashforth–Moulton methods: the predictor is
based on the fifth order Adams–Bashforth scheme and the corrector on the sixth order
Adams–Moulton scheme. We tested the efficiency of our newly developed schemes
against well known methods, with excellent results. The numerical experiments showed
that at least one of our schemes is noticeably more efficient compared to other methods,
some of which are specially designed for this type of problem. It is also worth mention-
ing that this is the first time that sixth algebraic order trigonometrically fitted Adams–
Bashforth–Moulton P–C schemes are used to efficiently solve the radial Schrödinger
equation.
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1. Introduction

Equations or systems of equations of the form

y′(x) = f(x, y), y(x0) = y0, (1)

are used to mathematical model problems in physical chemistry and chemical
physics, celestial mechanics, quantum mechanics, electronics, materials sciences
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and elsewhere. A class of equations that deserves special attention is the one with
oscillatory/periodic solution (see [1,2]).

During the last two decades there have been extensive investigations regard-
ing the numerical solution of the above equation (indicatively see [10–23] and
references therein). One of the better processes, first introduced by Lyche [21],
for the development of efficient methods for the numerical integration of first
order initial value problems with oscillating or periodic solution is the exponen-
tial and the trigonometric fitting technique. In a previous paper of ours [5], we
had applied trigonometric fitting to a lower algebraic order Adams–Bashforth–
Moulton P–C scheme for the solution of (1), with excellent results. We have also
applied trigonometric fitting to quite different types of predictor–corrector meth-
ods, like the Explicit Advanced Step-point or EAS methods (see Ref. [3]), which
had been introduced in their non-trigonometrically fitted form in Ref. [4]. How-
ever, until our recent paper [6], it appears that nobody had previously success-
fully attempted to use trigonometrically fitted P–C schemes for the efficient solu-
tion of the radial Schrödinger equation. In this paper we further develop our
new trigonometrically fitted P–C methods for the numerical solution of the res-
onance problem of the Schrödinger equation.

The one-dimensional Schrödinger equation has the form:

y ′′(r) = [l(l + 1)/r2 + V (r) − k2]y(r). (2)

Models of this type, which represent a boundary value problem, occur fre-
quently in chemistry and theoretical physics, (see for example [14]). It is known
from the literature that during the last decades many numerical methods have
been constructed for the approximate solution of the Schrödinger equation (see
indicatively [9–15]). The aim and the scope of the above activity was the devel-
opment of fast and reliable methods. The developed methods could be divided
into two main categories:

• Methods with constant coefficients.

• Methods with coefficients dependent on the frequency of the problem.1

This paper is structured as follows: In Section 2 we develop a new family
of trigonometrically fitted schemes and we also investigate and briefly discuss the
stability of our new schemes. In Section 3 we proceed to the numerical experi-
mentations. Finally, in Section 4 we present the concluding remarks.

1In the case of the Schrödinger equation the frequency of the problem is equal to:√
|l(l + 1)/r2 + V (r) − k2|.
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2. A family of trigonometrically fitted sixth algebraic order P–C schemes

The P–C family of methods appearing below has been widely used (e.g., by
Shampine and Gordon [7]):

yn+1 = yn + h

k−1∑

i=0

bi∇ ifn,

yn+1 = yn + h

k∑

i=0

βi∇ if n+1. (3)

In (3) the corrector is always one order higher than the predictor and the
overall algebraic order of the scheme is determined by the corrector’s order.
From the general case (3), after expressing the backward differences in terms of
fn−i , we can obtain the following sixth algebraic order five-step scheme:

yn+1 = yn + h
(
a0 fn + a1 fn−1 + a2 fn−2 + a3 fn−3 + a4 fn−4

)
,

yn+1 = yn + h
(
c0 f n+1 + c1 fn + c2 fn−1 + c3 fn−2 + c4 fn−3 + c5 fn−4

)
, (4)

where in terms of fn−i , ai, i = 0(1)4 are the known Adams–Bashforth coefficients
and the ci, i = 0(1)5 coefficients correspond to the Adams–Moulton coefficients
for (3) above, as well as for w = 0, see equation (B.1) in Appendix B.

2.1. First member of the family

2.1.1. Development of the method
In order for the above method (4) to be exact for any linear combination

of the functions

{1, x, x2, x3, x4, cos(±v x), sin(±v x)} (5)

the following system of equations must hold:

−1 + cos(h v) = −(−2 c3 cos(h v) sin(h v) − c2 sin(h v) + c0 h a0 v

−4 cos(h v)2 c4 sin(h v) + h v c0 a1 cos(h v) − 8 cos(h v)2 c0 h a4 v

+4 c5 cos(h v) sin(h v) + 2 cos(h v)2 c0 h a2 v + 4 h v c0 a3 cos(h v)3

+8 cos(h v)4 c0 h a4 v − 3 h v c0 a3 cos(h v) + c4 sin(h v)

−c0 h a2 v + c0 h a4 v − 8 cos(h v)3 c5 sin(h v))h v, (6)

sin(h v) = (4 cos(h v)2 h v c0 a3 sin(h v) + h v c0 a1 sin(h v)

+2 h v c0 a2 cos(h v) sin(h v) + 2 cos(h v)2 c3 − h v c0 a3 sin(h v)

+8 cos(h v)4 c5 − 4 h v c0 a4 cos(h v) sin(h v) + c2 cos(h v)

+8 cos(h v)3 h v c0 a4 sin(h v) + 4 cos(h v)3 c4 − 8 c5 cos(h v)2
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+c0 + c1 − c3 + c5 − 3 c4 cos(h v))h v, (7)

1 = c0 + c1 + c2 + c3 + c4 + c5, (8)

1 = 2 c0 a0 + 2 c0 a1 + 2 c0 a2 + 2 c0 a3 + 2 c0 a4

−2 c2 − 4 c3 − 6 c4 − 8 c5, (9)

1 = −6 c0 a1 + 48 c5 + 27 c4 + 12 c3

−12 c0 a2 + 3 c2 − 18 c0 a3 − 24 c0 a4, (10)

1 = 192 c0 a4 + 108 c0 a3 + 48 c0 a2 + 12 c0 a1

−108 c4 − 256 c5 − 4 c2 − 32 c3. (11)

We note here that in the above system the equations (8)–(11) are produced
from the requirement that method (4) is accurate for any linear combination of
the functions 1, x, x2, x3, x4. The equations (6) and (7) are produced from the
requirement that method (4) is accurate for any linear combination of the func-
tions cos(±v x), sin(±v x). Assuming the known Adams–Bashforth coefficients
in terms of fn−i :

a0 = 1901
720

, a1 = −1387
360

, a2 = 109
30

, a3 = −637
360

, a4 = 251
720

(12)

the solution of this system of equations is given in Appendix A.
For small values of w the formulae given by (A.1) are subject to heavy

cancelations. In this case the Taylor series expansions, presented in Appendix B,
should be used.

In figure 1 we present the behavior of the quantities c[i] = ci, i = 0(1)5,
where ci, i = 0(1)5 are given by (A.1). It is easy to see that for 4 < w < 8 and
12 < w < 14 (for the coefficient c0) and for 6.2 < w < 6.4 (for the coefficients
cj , j = 1(1)5 is better to use Taylor series expansions.

The local truncation error of the above method is given by:

L.T.E = 1
2903040

h7
(

274451 w2 y(5)
n − 315875 y(6)

n − 41424 y(7)
n

)
+ O

(
h8

)
,

(13)

where y(5)
n is the fifth derivative of y at xn, y(6)

n is the sixth derivative of y at xn

and y(7)
n is the seventh derivative of y at xn. We note here that in order to pro-

duce equation (13) we express the quantities yn+1, yn−1, yn−2, yn−3, yn−4 and
fn+1, fn−1, fn−2, fn−3, fn−4 around the point xn and then we substitute the
expressions into (4).

Since w = vh, it can be seen that when v → 0 our trigonometrically fitted
method becomes the original predictor–corrector method for the relevant alge-
braic order and step-number.
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Figure 1. Behavior of the coefficients ci, i = 0(1)5 given by (A.1) for several values of v.

2.1.2. Stability analysis of the method
Applying scheme (4) with the coefficients a0 = 1901

720 , a1 = − 1387
360 , a2 = 109

30 ,
a3 = − 637

360 and a4 = 251
720 to the scalar test equation

y ′ = λ y, where λ ∈ C (14)

we obtain the following difference equation
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yn+1 − A0(H) yn + A1(H) yn−1 + A2(H) yn−2 + A3(H) yn−3 + A4(H) yn−4 = 0,

(15)

where

A0(H) = 1 + c0 H + 1901
720

c0 H 2 + H c1,

A1(H) = 1387
360

c0 H 2 − H c2,

A2(H) = −109
30

c0 H 2 − H c3, A3 = 637
360

c0 H 2 − H c4,

A4 = −251
720

c0 H 2 − H c5. (16)

The characteristic equation of (15) is given by

r5 − A0(H) r4 + A1(H) r3 + A2(H) r2 + A3(H) r + A4(H) = 0. (17)

By solving the above equation in H and using the boundary locus technique
[8] and substituting r = exp(i θ), where i = √−1, we can plot the regions of
absolute stability for θ ∈ [0, 2 π ]. In figure 2 we present the region of absolute
stability for the original case (i.e., method (4) without trigonometric fitting). In
figure 3 we present the regions of absolute stability for the trigonometrically fit-
ted case and for w = 1, w = 2, w = 5 and w = 10.

As we can see from figure 3, it appears that the larger the frequency w becomes,
the region of absolute stability also has gains in certain instances. Among other
things, it remains to be investigated how w influences the region of absolute stability.

Original Case
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Figure 2. Stability region for the original case.
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Trigonometrically-Fitted Case with w=1
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Figure 3. Stability region for the second member of the trigonometrically fitted case and for w = 1
(above left), w = 2 (above right), w = 5 (below left) and w = 10 (below right).

2.2. Second member of the family

2.2.1. Development of the method
In order for the above method (4) to be exact for any linear combination

of the functions

{1, x, x2, cos(±v x), sin(±v x), x cos(±v x), x sin(±v x)} (18)

the following system of equations must hold:

−1 + cos(h v) = −(h v c0 a0 + h v c0 a1 cos(h v) + 2 h v c0 a2 cos(h v)2

+4 h v c0 a3 cos(h v)3 + 8 h v c0 a4 cos(h v)4

−h v c0 a2 − 3 h v c0 a3 cos(h v)

−8 cos(h v)2 h v c0 a4 + h v c0 a4

−c2 sin(h v) − 2 c3 cos(h v) sin(h v)

−4 c4 sin(h v) cos(h v)2 + c4 sin(h v)

−8sin(h v) c5cos(h v)3+ 4 c5 cos(h v) sin(h v))h v, (19)
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sin(hv) = (c2cos(hv)−8cos(hv)2c5 +c5 +2c3cos(hv)2

+8sin(hv)hvc0a4cos(hv)3 +8c5cos(hv)4

−c3 +c0 +c1 +hvc0a1sin(hv)+4c4cos(hv)3

+2hvc0a2cos(hv)sin(hv)−hvc0a3sin(hv)

−4hvc0a4cos(hv)sin(hv)−3c4cos(hv)

+4hvc0a3sin(hv)cos(hv)2)hv, (20)

cos(hv)x+cos(hv)h−x = (4h2c0a4v
2 +hc0a2v

2x+4c4cos(hv)3

−3c4cos(hv)+c2vsin(hv)x−c4vsin(hv)x

+3hc4vsin(hv)−hc2vsin(hv)−8cos(hv)2c5

−hc0a4v
2x+h2c0a1v

2cos(hv)

−12hc4vsin(hv)cos(hv)2 −2hc0a2v
2xcos(hv)2

−9h2c0a3v
2cos(hv)−4hc3vcos(hv)sin(hv)

−4c5vcos(hv)sin(hv)x−hc0a1v
2cos(hv)x

+16hc5vcos(hv)sin(hv)+3hc0a3v
2cos(hv)x

+4h2c0a2v
2cos(hv)2 +8hc0a4v

2xcos(hv)2

−4hc0a3v
2cos(hv)3x+4cos(hv)2c4vsin(hv)x

+2c3vcos(hv)sin(hv)x+12h2c0a3v
2cos(hv)3

+c5 −32h2c0a4v
2cos(hv)2 +c2cos(hv)

+2hvc0a1sin(hv)−2hvc0a3sin(hv)

+16sin(hv)hvc0a4cos(hv)3 −hc0a0xv2

+8hvc0a3sin(hv)cos(hv)2 −c3 +c0 +c1

+32cos(hv)4h2c0a4v
2 −8cos(hv)4hc0a4v

2x

−8hvc0a4cos(hv)sin(hv)−2h2c0a2v
2

+8cos(hv)3c5vsin(hv)x−32cos(hv)3hc5vsin(hv)

+4hvc0a2cos(hv)sin(hv)+2c3cos(hv)2

+8c5cos(hv)4)h, (21)

sin(hv)(x+h) = −h(−2hc3v+4hc5v−2hvc0a0

+2hvc0a2 −2hvc0a4 +c2sin(hv)−c4sin(hv)

+hc2vcos(hv)−8hvc0a3cos(hv)3

+6hvc0a3cos(hv)+16cos(hv)2hvc0a4

−2hvc0a1cos(hv)

−4hvc0a2cos(hv)2 +4c4sin(hv)cos(hv)2

−c1xv−4c5cos(hv)sin(hv)

+32cos(hv)4hc5v−8cos(hv)4c5vx

+32cos(hv)3h2c0a4v
2sin(hv)
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−8 cos(h v)3 h c0 a4 v2 sin(h v) x

−c0 x v − 16 h v c0 a4 cos(h v)4

+8 sin(h v) c5 cos(h v)3 − c5 v x

+4 h c0 a4 v2 cos(h v) sin(h v) x

+2 c3 cos(h v) sin(h v) + c3 v x

+4 h2 c0 a2 v2 cos(h v) sin(h v)

−h c0 a1 v2 sin(h v) x − 3 h2 c0 a3 v2 sin(h v)

−2 h c0 a2 v2 cos(h v) sin(h v) x

+3 c4 v cos(h v) x − 9 h c4 v cos(h v)

−2 cos(h v)2 c3 v x + h2 c0 a1 v2 sin(h v)

−16 h2 c0 a4 v2 cos(h v) sin(h v)

+h c0 a3 v2 sin(h v) x

−4 h c0 a3 v2 sin(h v) x cos(h v)2

−c2 v cos(h v) x + 8 c5 v x cos(h v)2

+4 h c3 v cos(h v)2

−32 h c5 v cos(h v)2 + 12 cos(h v)3 h c4 v

−4 cos(h v)3 c4 v x

+12 cos(h v)2 h2 c0 a3 v2 sin(h v)), (22)

1 = c0 + c1 + c2 + c3 + c4 + c5, (23)

1 = 2 c0 a0 + 2 c0 a1 + 2 c0 a2

+2 c0 a3 + 2 c0 a4 − 2 c2 − 4 c3 − 6 c4 − 8 c5, (24)

where w = v h. We note here that in the above system the equations (23) and
(24) are produced from the requirement that method (4) is accurate for any lin-
ear combination of the functions 1, x, x2. The equations (19–22) are produced
from the requirement that method (4) is accurate for any linear combination of
the functions

cos(±v x), sin(±v x), x cos(±v x), x sin(±v x). (25)

Assuming the known Adams–Bashforth coefficients in terms of fn−i given by
(12) the solution of this system of equations is given in Appendix C.

For small values of w the formulae given by (A.1) are subject to heavy
cancellations. In this case the Taylor series expansions presented in Appendix D
should be used.
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Figure 4. Behavior of the coefficients ci, i = 0(1)5 given by (A.1) for several values of v.

In figure 4 we present the behavior of the quantities c[i] = ci, i = 0(1)5,
where ci, i = 0(1)5 are given by (A.1). It is easy to see that for 4.5 < w < 7.5
and 11.5 < w < 14 (for the coefficient c0) and for 6.2 < w < 6.4 (for the coeffi-
cients cj , j = 1(1)5 is better to use Taylor series expansions.



G. Psihoyios and T.E. Simos / Sixth algebraic order 305

The local truncation error of the above method is given by:

L.T.E = 1
2903040

h7
(

274451 w4 y(3)
n + 548902 w2 y(5)

n − 315875 y(6)
n − 41424 y(7)

n

)

+O
(
h8

)
, (26)

where y(3)
n is the third derivative of y at xn, y(5)

n is the fifth derivative of y at xn,
y(6)

n is the sixth derivative of y at xn and y(7)
n is the seventh derivative of y at

xn. We note here that in order to produce equation (13) we express the quanti-
ties yn+1, yn−1, yn−2, yn−3, yn−4 and fn+1, fn−1, fn−2, fn−3, fn−4 around the
point xn and then we substitute the expressions into (4).

Since w = vh, it can be seen that when v → 0 our trigonometrically fitted
method becomes the original predictor–corrector method for the relevant alge-
braic order and step-number.
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Figure 5. Stability region for the second member of the trigonometrically-fitted case and for w = 1
(above left), w = 2 (above right), w = 5 (below left) and w = 10 (below right).
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2.2.2. Stability analysis of the method
We follow the same procedure as in the fist method of the family. We apply

the scheme (4) with the coefficients a0 = 1901
720 , a1 = − 1387

360 , a2 = 109
30 , a3 = − 637

360
and a4 = 251

720 to the scalar test equation (14) and we obtain the difference equa-
tion (15) and (16). The characteristic equation of (15) and (16) is given by (17).

By solving the above equation in H and using the boundary locus tech-
nique [8] and substituting r = exp(i θ), where i = √−1, we can plot the regions
of absolute stability for θ ∈ [0, 2 π ]. In figure 5 we present the regions of abso-
lute stability for the trigonometrically fitted case and for w = 1, w = 2, w = 5
and w = 10.

As we can see from figure 5, the larger the frequency w, the larger the
region of absolute stability. As a matter of fact it appears that for appropriate
w our trigonometrically fitted scheme has huge gains in absolute stability. Such
large regions of absolute stability place our scheme in an advantageous position
and thus it could be used to efficiently solve a much larger selection of prob-
lems, in comparison to other relevant methods with considerably smaller stabil-
ity regions.

3. Numerical illustrations

In this section we present some numerical results to illustrate the per-
formance of our new methods. Consider the numerical integration of the
Schrödinger equation as given by (2)

y ′′(r) = [l(l + 1)/r2 + V (r) − k2]y(r)

using the well-known Woods–Saxon potential (see [10,14,26,27]) which is given
by

V (r) = Vw(r) = u0

(1 + z)
− u0z

[a(1 + z)2]
(27)

with z = exp[(r −R0)/a], u0 = −50, a = 0.6 and R0 = 7.0. In figure 6 we give a
graph of this potential. Below we provide certain important definitions for (2):

• The function W(r) = l(l + 1)/r2 + V (r) is called the effective potential.
This satisfies W(r) → 0 as r → ∞;

• E = k2 is a real number denoting the energy;

• l is a given integer representing angular momentum;

• V is a given function which denotes the potential,

• The boundary conditions are:

y(0) = 0 (28)
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Figure 6. The Woods-Saxon potential.

and a second boundary condition, for large values of r, determined by
physical considerations.

In the case of negative eigenenergies (i.e., when E ∈ [−50, 0]) we have the well-
known bound-states problem while in the case of positive eigenenergies (i.e., when
E ∈ (0, 1000]) we have the well-known resonance problem (see [9,17,27]).

3.1. Resonance problem

In the asymptotic region the equation (2) effectively reduces to

y ′′(x) +
(

k2 − l(l + 1)

x2

)
y(x) = 0, (29)

for x greater than some value X.
The above equation has linearly independent solutions kxjl(kx) and kxnl

(kx), where jl(kx), nl(kx) are the spherical Bessel and Neumann functions, respec-
tively. Thus the solution of equation (1) has the asymptotic form (when x → ∞)

y(x) � Akxjl(kx) − Bnl(kx)

� D[sin(kx − πl/2) + tan δl cos(kx − πl/2)], (30)
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where δl is the phase shift which may be calculated from the formula

tan δl = y(x2)S(x1) − y(x1)S(x2)

y(x1)C(x2) − y(x2)C(x1)
(31)

for x1 and x2 distinct points on the asymptotic region (for which we have that
x1 is the right-hand end point of the interval of integration and x2 = x1 − h, h

is the stepsize) with S(x) = kxjl(kx) and C(x) = kxnl(kx).
Since the problem is treated as an initial-value problem, one needs yj , j =

0(1)5 before starting a five-step methods. From the initial condition, y0 = 0.
The values yk, k = 1(1)3 are computed using the a high order Runge–Kutta
method of Dormand et al. [25]. With these starting values we evaluate at x1 of
the asymptotic region the phase shift δl from the above relation.

3.1.1. The Woods–Saxon potential
As a test for the accuracy of our methods we consider the numerical inte-

gration of the Schrödinger equation (2) with l = 0 in the well-known case where
the potential V (r) is the Woods–Saxon one (27).

One can investigate the problem considered here, following two procedures.
The first procedure consists of finding the phase shift δ(E) = δl for E ∈ [1, 1000].
The second procedure consists of finding those E, for E ∈ [1, 1000], at which δ

equals π/2. In our case we follow the first procedure i.e., we try to find the phase
shifts for given energies. The obtained phase shift is then compared to the ana-
lytic value of π/2.

The above problem is the so-called resonance problem when the positive ei-
genenergies lie under the potential barrier. We solve this problem, using the tech-
nique fully described in [5].

The boundary conditions for this problem are:

y(0) = 0, y(x) ∼ cos[
√

Ex] for large x.

The domain of numerical integration is [0, 15]. The w we use is: if r > 6.5 then
w = √

E − 50 and if r � 6.5 then w = √
E.

For comparison purposes in our numerical illustration we use:

• the well known Numerov’s method (which we call Method [a]),

• the explicit Numerov-type method of Chawla [24] (Method [b]),

• the original Adams–Bashforth–Moulton P–C multistep method (4) of
fifth order (Method [c]),

• the well known Adams–Bashforth–Moulton P–C multistep method of
sixth order (Method [d]),

• the well known Adams–Bashforth–Moulton P–C multistep method of
seventh order (Method [e]) and
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Figure 7. Error Err for several values of n for the eigenvalue E3 = 989.701916.

• the first family member of the newly developed trigonometrically predic-
tor–corrector multistep method (Method [f]),

• the second family member of the new developed trigonometrically predic-
tor–corrector multistep method (Method [g]).

The numerical results obtained for the seven methods, with stepsizes equal
to 1/2n for several values of n, were compared with the analytic solution of the
Woods–Saxon potential resonance problem, rounded to six decimal places. In
figure 7 we may see the errors Err = − log10 |Ecalculated − Eanalytical| of the highest
eigenenergy E3 = 989.701916 for several values of n.

4. Conclusions

In this paper have introduced a new approach for developing efficient meth-
ods for the numerical solution of the Schrödinger type equations. Using this
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new approach we have developed two trigonometrically fitted predictor–correc-
tor multistep methods of algebraic order six.

From the numerical results we can draw the following points:

• Methods [a] and [c], i.e., the Numerov’s method and the original P–
C multistep method (4) perform very badly and basically they appear
unable to solve the problem.

• The well known Adams–Bashforth–Moulton P–C multistep methods of
sixth and seventh order respectively, i.e., Methods [d] and [e], just manage
to solve the problem, but only with very small stepsizes (for large ns). As
expected, the seventh order performs a little better.

• Method [b], i.e., the explicit Numerov-type method of Chawla [24],
behaves respectably and achieves a solution from a relatively early point.

• Finally, our new trigonometrically fitted P–C schemes are overall more
efficient than the other methods. In particular, the second scheme per-
forms noticeably better than any of the other methods used, including
our newly developed first P–C scheme.

Using our two new P–C schemes, in the near future we intend to publish a
further paper, in which we will apply these methods to the solution of the bound
states problem of the Schrödinger equation.

All computations were carried out on a IBM PC-AT compatible 80486 using
double precision arithmetic with 16 significant digits accuracy (IEEE standard).

Appendix A

c0 =−15
4

48cos(w)3−24cos(w)2 +55wcos(w)sin(w)−36cos(w)−25wsin(w)+12
(269cos(w)2w−270cos(w)sin(w)−253wcos(w)+29w+225sin(w))w

,

c1 = 1
192

(138240cos(w)5 +104555cos(w)4w2 +12048sin(w)cos(w)4w

−328320cos(w)4 +129600cos(w)3 −297046cos(w)3w2

+3000sin(w)cos(w)3w+286656cos(w)2w2 −4476wcos(w)2sin(w)

+198720cos(w)2−159840cos(w)−100754w2cos(w)−48960wcos(w)sin(w)

+4429w2 +42708wsin(w)+21600)/((269wcos(w)4 −270sin(w)cos(w)3

−791cos(w)3w+804cos(w)2w+765sin(w)cos(w)2 −720cos(w)sin(w)

−311wcos(w)+29w+225sin(w))w),

c2 = − 1
48

(51840cos(w)5 +12048sin(w)cos(w)4w+17937cos(w)4w2

−112320cos(w)4+21600cos(w)3−42344cos(w)3w2−9060sin(w)cos(w)3w
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−7806 w cos(w)2 sin(w) + 27768 cos(w)2 w2 + 90720 cos(w)2 − 51840 cos(w)

−612 w2 cos(w) − 6120 w cos(w) sin(w) + 15258 w sin(w) − 4909 w2)/

((cos(w)2 − 2 cos(w) + 1) w(269 cos(w)2 w − 270 cos(w) sin(w)

−253 w cos(w) + 29 w + 225 sin(w))),

c3 = − 1
96

(−69120 cos(w)5 + 1603 cos(w)4 w2 − 36144 sin(w) cos(w)4 w

+120960 cos(w)4 + 43200 cos(w)3 + 70560 sin(w) cos(w)3 w

−35914 cos(w)3 w2 + 82320 cos(w)2 w2 − 61992 w cos(w)2 sin(w)

−164160 cos(w)2 + 47520 cos(w) + 59040 w cos(w) sin(w) − 62230 w2 cos(w)

+20701 w2 − 44424 w sin(w) + 21600)/((269 w cos(w)4 − 270 sin(w) cos(w)3

−791 cos(w)3 w + 804 cos(w)2 w + 765 sin(w) cos(w)2 − 720 cos(w) sin(w)

−311 w cos(w) + 29 w + 225 sin(w))w),

c4 = 1
48

(−8640 cos(w)5+4320 cos(w)4−12048 sin(w) cos(w)4 w+8963 cos(w)4 w2

+32400 cos(w)3−36756 cos(w)3 w2 + 31560 sin(w) cos(w)3 w−36720 cos(w)2

−37194 w cos(w)2 sin(w)+52632 cos(w)2 w2 − 2160 cos(w)−30488 w2 cos(w)

+28620 w cos(w) sin(w) + 10800 − 15258 w sin(w) + 7809 w2)/

((cos(w)2−2 cos(w) + 1) w(269 cos(w)2 w−270 cos(w) sin(w) − 253 w cos(w)

+29 w + 225 sin(w))),

c5 = − 1
192

(−17280 cos(w)4 + 13805 cos(w)4 w2 − 12048 sin(w) cos(w)4 w

−50994 cos(w)3 w2 + 36600 sin(w) cos(w)3 w + 43200 cos(w)3

−47724 w cos(w)2 sin(w) − 25920 cos(w)2 + 67104 cos(w)2 w2

−36086 w2 cos(w) + 34560 w cos(w) sin(w) − 12960 cos(w) − 15708 w sin(w)

+12960 + 8331 w2)/((cos(w)2 − 2 cos(w) + 1) w(269 cos(w)2 w

−270 cos(w) sin(w) − 253 w cos(w) + 29 w + 225 sin(w))), (A.1)

where w = v h.

Appendix B

c0 = 95
288

− 16691
435456

w2 + 617963
658409472

w4 − 6747760249
273766658457600

w6

− 1630503557167
26905787193212928000

w8 − 543718683891689
40681550236137947136000

w10

− 153246419812261258621
287561605999164693125529600000

w12 + · · ·
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c1 = 1427
1440

+ 120821
1244160

w2 − 111345817
65840947200

w4 + 36456178571
1095066633830400

w6

+ 708972974579
1956784523142758400

w8 + 617293894360919
32545240188910357708800

w10

+ 193561746298548128899
230049284799331754500423680000

w12 + · · ·

c2 = −133
240

− 11197
2177280

w2 − 43144933
16460236800

w4 + 31021423919
273766658457600

w6

− 907539121207
1076231487728517120

w8 + 470143473422459
8136310047227589427200

w10

+ 112931093325974388343
57512321199832938625105920000

w12 + · · ·

c3 = 241
720

− 800959
4354560

w2 + 283925549
32920473600

w4 − 160541874247
547533316915200

w6

+ 796313823367
827870375175782400

w8 − 499573557610151
3254524018891035770880

w10

− 645286119602445682271
115024642399665877250211840000

w12 + · · ·

c4 = − 173
1440

+ 203039
1088640

w2 − 30097577
4115059200

w4 + 16190056291
68441664614400

w6

− 726798012217
1345289359660646400

w8 + 253465539328537
2034077511806897356800

w10

+ 66544378284558911741
14378080299958234656276480000

w12 + · · ·

c5 = 3
160

− 489533
8709120

w2 + 135839383
65840947200

w4 − 71507985413
1095066633830400

w6

+ 12905456687173
107623148772851712000

w8 − 5613029470462429
162726200944551788544000

w10

− 87301999147261146673
67661554352744633676595200000

w12 + · · · (B.1)

Appendix C

c0 = −45
2

(−8 w cos(w)4 + 8 sin(w) cos(w)3 + 8 w cos(w)3 + 14 w cos(w)2

−4 sin(w) cos(w)2 − 10 w cos(w) + 5 w2 cos(w) sin(w) − 6 cos(w) sin(w)

−4 w + 5 w2 sin(w) + 2 sin(w))
/
((−269 sin(w) cos(w)2 + 16 w cos(w)2

+208 cos(w) sin(w) + 343 w cos(w) − 224 w − 74 sin(w))w2),
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c1 = 1
32

(−8592 w − 4602 w3 + 1958 sin(w) + 20298 w2 cos(w) sin(w)

+5756 sin(w) cos(w)2 + 6244 w cos(w) − 10260 cos(w) sin(w)

+15680 sin(w) cos(w)3−22712 w cos(w)3+25336 w cos(w)4+19668 w cos(w)2

−34426 sin(w) cos(w)2 w2−2170 sin(w) cos(w)3 w2 + 30419 sin(w) cos(w)4 w2

+15208 sin(w) cos(w)6 w2 − 28368 sin(w) cos(w)5 w2 + 3752 sin(w) cos(w)6

−5420 sin(w) cos(w)5 − 11466 sin(w) cos(w)4 − 36412 w cos(w)6

−12204 cos(w)5 w + 9505 cos(w)5 w3 + 28672 cos(w)7 w − 27092 cos(w)3 w3

+5682 cos(w)2 w3+18667 cos(w) w3− 4201 w2 sin(w))/((−269 sin(w) cos(w)5

+16 cos(w)5 w + 477 sin(w) cos(w)4 + 327 w cos(w)4 − 13 sin(w) cos(w)3

−583 w cos(w)3 − 403 sin(w) cos(w)2 − 103 w cos(w)2 + 282 cos(w) sin(w)

+567 w cos(w) − 74 sin(w) − 224 w)w2),

c2 = − 1
16

(−3650 w + 6935 cos(w)4 w3 + 3545 w3 + 158 sin(w)

+13828 w2 cos(w) sin(w) + 5396 sin(w) cos(w)2 + 6746 w cos(w)

−3060 cos(w) sin(w)−880 sin(w) cos(w)3 + 21324 w cos(w)3+4302 w cos(w)4

−8852 w cos(w)2 − 19204 sin(w) cos(w)2 w2 + 10272 sin(w) cos(w)3 w2

−13919 sin(w) cos(w)4 w2 + 12120 sin(w) cos(w)5 w2 − 2008 sin(w) cos(w)6

+3220 sin(w) cos(w)5 − 2826 sin(w) cos(w)4 + 25112 w cos(w)6

−46990 cos(w)5 w + 2008 cos(w)7 w − 13594 cos(w)3 w3 + 6028 cos(w)2 w3

−754 cos(w) w3 − 6337 w2 sin(w))/((−269 sin(w) cos(w)4 + 16 w cos(w)4

+746 sin(w) cos(w)3 + 311 w cos(w)3 − 894 w cos(w)2 − 759 sin(w) cos(w)2

+791 w cos(w) + 356 cos(w) sin(w) − 74 sin(w) − 224 w)w2),

c3 = − 1
16

(1484 w− 4994 cos(w)4 w3−4208 w3−158 sin(w) − 184 w2 cos(w) sin(w)

+4 sin(w) cos(w)2+10892 w cos(w)+3104 cos(w) sin(w)+4016 sin(w) cos(w)7

−4016 w cos(w)8−12432 sin(w) cos(w)3− 48336 w cos(w)3+ 50404 w cos(w)4

−16016 w cos(w)2 − 7066 sin(w) cos(w)2 w2 + 22322 sin(w) cos(w)3 w2

+15661 sin(w) cos(w)4 w2 − 424 sin(w) cos(w)6 w2 − 25898 sin(w) cos(w)5 w2

−7312 sin(w) cos(w)6 + 5312 sin(w) cos(w)5 + 7466 sin(w) cos(w)4

−31856 w cos(w)6 + 37156 cos(w)5 w + 119 cos(w)5 w3 + 288 cos(w)7 w

+3968 cos(w)3 w3 + 5962 cos(w)2 w3 − 7327 cos(w) w3 + 5309 w2 sin(w))/

((−269 sin(w) cos(w)5 + 16 cos(w)5 w + 477 sin(w) cos(w)4 + 327 w cos(w)4

−13 sin(w) cos(w)3 − 583 w cos(w)3 − 403 sin(w) cos(w)2 − 103 w cos(w)2

+282 cos(w) sin(w) + 567 w cos(w) − 74 sin(w) − 224 w)w2)
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c4 = 1
16

(2002 w + 3185 cos(w)4 w3−4705 w3−158 sin(w) − 1868 w2 cos(w) sin(w)

−8276 sin(w) cos(w)2 + 5782 w cos(w) + 3780 cos(w) sin(w)

+1600 sin(w) cos(w)3+19236 w cos(w)3+35778 w cos(w)4 − 33068 w cos(w)2

−6556 sin(w) cos(w)2 w2+27808 sin(w) cos(w)3 w2−24921 sin(w) cos(w)4 w2

+5096 sin(w) cos(w)5 w2 + 2008 sin(w) cos(w)6 − 6100 sin(w) cos(w)5

+7146 sin(w) cos(w)4 + 12200 w cos(w)6−39922 cos(w)5 w−2008 cos(w)7 w

−9606 cos(w)3 w3 + 7052 cos(w)2 w3 + 1914 cos(w) w3 + 3681 w2 sin(w))/

((−269 sin(w) cos(w)4 + 16 w cos(w)4 + 746 sin(w) cos(w)3 + 311 w cos(w)3

−894 w cos(w)2 − 759 sin(w) cos(w)2 + 791 w cos(w) + 356 cos(w) sin(w)

−74 sin(w) − 224 w)w2),

c5 = − 1
32

(2624 w − 5518 w3 + 202 sin(w) + 286 w2 cos(w) sin(w)

−7916 sin(w) cos(w)2 − 1844 w cos(w) + 2340 cos(w) sin(w)

+3760 sin(w) cos(w)3 + 21352 w cos(w)3+12104 w cos(w)4−18820 w cos(w)2

−6294 sin(w) cos(w)2 w2 + 13970 sin(w) cos(w)3 w2 − 6699 sin(w) cos(w)4 w2

+2008 sin(w) cos(w)6 w2 − 4016 sin(w) cos(w)5 w2 + 2008 sin(w) cos(w)6

−6100 sin(w) cos(w)5 + 5706 sin(w) cos(w)4 + 4092 w cos(w)6

−19508 cos(w)5 w + 1255 cos(w)5 w3 − 6348 cos(w)3 w3 + 4438 cos(w)2 w3

+4013 cos(w) w3 + 3985 w2 sin(w))/((−269 sin(w) cos(w)5 + 16 cos(w)5 w

+477 sin(w) cos(w)4 + 327 w cos(w)4 − 13 sin(w) cos(w)3 − 583 w cos(w)3

−403 sin(w) cos(w)2 − 103 w cos(w)2 + 282 cos(w) sin(w) + 567 w cos(w)

−74 sin(w) − 224 w)w2), (C.1)

where w = v h.

Appendix D

c0 = 95
288

− 16691
217728

w2 + 4441291
823011840

w4 − 667102693
8555208076800

w6

+ 161743808609
76436895435264000

w8 − 160492149731219
1271298444879310848000

w10

− 4157762749700361349
345626930287457563852800000

w12 +···
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c1 = 1427
1440

+ 120821
622080

w2 − 848384329
16460236800

w4 + 236767896359
136883329228800

w6

− 14790812373479
840805849787904000

w8 + 1082065512430667
635649222439655424000

w10

+ 3983594582040531541
3594520074989558664069120000

w12 +···

c2 = −133
240

− 11197
1088640

w2 + 159111073
8230118400

w4 + 119191515379
68441664614400

w6

− 210529105869239
840805849787904000

w8 + 17291289653066651
2542596889758621696000

w10

− 635623898478850172821
1797260037494779332034560000

w12 +···

c3 = 241
720

− 800959
2177280

w2 + 845622083
8230118400

w4

− 603625434817
68441664614400

w6 + 788484410653
1469940296832000

w8

− 24861626265433117
1271298444879310848000

w10 + 1148437640691769738393
1797260037494779332034560000

w12 +···

c4 = − 173
1440

+ 203039
544320

w2 − 693873277
8230118400

w4

+ 402824638499
68441664614400

w6 − 110085754079447
420402924893952000

w8

+ 31864509400954033
2542596889758621696000

w10 − 289868943618860626331
1797260037494779332034560000

w12 +···

c5 = 3
160

− 489533
4354560

w2 + 137838751
16460236800

w4 − 62875691393
136883329228800

w6

− 7300838386603
840805849787904000

w8 − 85995606835367
63564922243965542400

w10

− 119597782109786662351
1057211786761634901196800000

w12 +··· (D.1)
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